GOVERNING RELATIONSHIPS OF DYNAMICAL PLASTICITY

N. S. Kozin, A. A. Tuzovskii, UDC 534.222.2
and N. N. Kholin

Interpolation formulas are constructed in this paper for the elastic energy of a number
of metals [Fe(a-phase), Al, Cu, Ni, Pb, Ti, Be, Au, Cd, Pt, Ag, Zn, Mg, Sn, Sb, V, Nb, Ta,
Mo, W, Co, Th, U, 2r] which take account of the molding and defect formation in the crystal
lattice. To do this, a dependence on the second and third order invariants of the elastic
strain tensor as well as on a scalar parameter characterizing the defect density of the crys-
tal lattice is introduced in the internal energy equation of the medium. The formulas are
valid in the compression range 0.6 < p®/p < 1 and the temperature range 0 < T(K) < 0g» where
O is the temperature of electron degeneration. The interpolation coefficients for the elas-
tic energy are compared to the moduli of second approximation elasticity theory. On the basis
of the equations of state constructed, themagnitude of the works of the forces in the plastic
strains which go into the formation of defects is estimated.

§1. To close the complete system of mechanical equations when the effects of a change
in temperature during elastoplastic strain of a solid are important, it is necessary to ex-
amine the thermodynamic relationships in the theory of dynamical plasticity. It should hence
be kept in mind that the plastic deformation results in a change in the magnitude of the
material internal energy because of the change in its structure in a number of cases impor-
tant for practical applications. Thus, a discontinuity in the internal intramolecular bonds
occurs in macropolymers during deformation, cumulative dislocations occur in metals under
plastic deformation, etc. Hence, a dependence on a certain storage parameter characteriz-
ing the density of the defects being formed must be taken into account in the dependence of
the internal energy on the elastic strain and the entropy parameter which takes account of
the internal energy redistribution because of heat liberation. In the general case, this
parameter is a tensor. Therefore, by determining the model of the viscoelastoplastic body,
the density of the internal emergy can be written as

E = E(ng, S, nij), (l.l)
where sgj is the elastic strain temsor, S is the entropy per unit mass of the medium, nij
is the tensor of the defects (or the tensor of the dislocation density [1]). The second
law of thermodynamics has the form

TdS = dq' + dg,
where T is the absolute temperature, dq' is the uncompensated heat [2], and dq(e) is the ex~
ternal heat inflow. We have the following assumption:
E(€, S, niy) = E, (&5, S) + Eq4 (n45) = Ey, (1.2)
for the dependence (1.1), where E, is a normalizing constant.

This assumption is given a foundation by the requirement that the stress temsor g¢..,
which is defined as follows [2]: +J

aE

Pkl
685)-

would be independent of the parameter nj; but would be defined only by the elastic internal
bonds* [p is the density of the medium in (1.3)].
#The Murnaghan formulas [3]

G5 5= P, — 2e,,)0F og ;

should be used in investigating finite strains.
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§2, Following [4], we give the elastic part of the internal energy of an isotropic
medium in the form

e =Ey + E, (2.1)
where Ep and Et are, respectively, the cold and warm components of the internal energy. The

dependence of the internal energy on the elastic strains will be taken into account as fol=
lows. Let €$(i = x, y, z) denote the logarithm of the elastic elongations A i=x,y, 2)
along the principal elastic strain axes x, y, z:

es=1Ink,, ey=Ink,, & =Ink, (2.2)
Symmetric functions of eg: e, D, and A of the form

b——(S\“SU‘LSZ)—InP/P’ D—-"“(d_ i-rdzz),

3 . 73 .+ 38 e ' :
A:E-(dx—,-—ddez), dx=s;—1——3-, dy=¢)++, dy=¢+3

are invariants of the elastic strain tensor eij. Let us use the representation of the cold

part of the internal energy of an isotropic medium in the form of polynomials in powers of
the invariants €, D, and A:

—

E, = h(e) + 2d%e)D + MA,
k() = 5 afe? (1 + Lz + Le?), (2.3)
d?(e) = dg (1 + Le + 1,e? - 1,¢3),
where do, @o are_the velocities of the transverse and volume waves at ¢ = 0, T = 0; the con-

stants 7, — Ls, M have the meaning of interpolation coefficients. The values of the cold
pressure pp, and the volume compression modulus K are calculated as follows

oFE 2 . 3 )
Pp =075, = Pa0 (1 +5he-- 21282) g,
K(e) = a? = ip_@%"_ =a [1 (1l -3l) e+ (%z1 . 612) e? 21233].

The longitudinal speed of sound c equals va® + (4/3)d°, while the square of the trans~
verse velocity is independent of the temperature under the conditions of the given interpo-
lation and is given by the expression

d? =5 o= = di (1 + Lg + 1,e* -+ 1;e3).

The third-order elastic modulus M is considered constant,

The member E, representing the thermal part of the energy is given parametrically in
terms of the entropy parameter s > 0

E; = 0(g)g(s) -+ g(50)Bolep’e.

The Debye temperature 6, the absolute temperature T, the entropy S, and the function q = ¢ cT/0
which equals the product of the specific heat by the reduced temperature, are given func-
tions

Be) = Og(f +- L& + Lie? + Iyed), T = B(e)s.

In order for the functions S(s) and g(s) to be constructed as easily as possible, the methods
of calculating them presented next, should be used. When s = T/8<1

2(s) = __[_g = s4—3sNii-};e_%(1 +35+6(%) +6(3))] - RDw. 9,

k=1
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4Ra* SR e 5, s\2 o s% 3R
()_.. T Sfi__p‘_;.h;1 i (1+4—E—r8(7c‘} i8k3)+pa D(N,S)v

m‘p;-

where the remainder terms D and D admit of the estimate
N—1
1— (s/N)® ‘Dl<8e S 4 —(s/N)*

Y 4
( ) 1— (s/N) ® (_’1)N 1— (s/N) "

For sufficiently high temperatures (s = T/@ 2 1), it is convenient to use the formulas

ml/
ml»

|D|<:

N—1i
9R Bon —on
g0 =5 X @Fsas T T EW ),

3R 90r "\ By (2k—1) o Y
S(S) =E(1+1n8)+i—(:k% ms - (N, 5)1

where

PN 9R_|Boy|@N—1)
[H(N,8)| < 3= -@-NJ:%T(S"ZN’ N, <= Gn ForEmn’

Here u, is the atomic weight, R = 8.31- +107 gecm/(sec®+deg-mole), and the coefficients By are
the Bernoulli numbers [4]:Be = 1, B, = 1/6, B, = —1/30, etc.

The calculations of g(s) and S(s) were performed by means of the formulas mentioned,
which were compiled in the form of standard procedures with automatic selection of the number
of terms for a given absalute error. Rapid convergence of the series permitted the actual
use of a small number of terms, for instance, the absolute value of the remainder terms did
not exceed 10~® for N = 3.

For the defect part Ej of the elastic energy, we use the representation
E,; = b*dn,

which expresses the energy of a dislocation concentration per unit mass [5]. The scalar
quantity n is the defect demsity (the dimension of n is cm™%), b is the Burgers vector, and
d is the velocity of shear wave propagation.

The normalizing constant E. in (1.2) was selected from the considerations that E = 0
in the undeformed state under normal conditions, whereupon E, = Qog(so) (1 + L¢).

By using the relationship
2 o\ JOF
0 = — 03 as od; 3 aD (3’D d")“‘m

the reduced elastic energy equation permits computation of the stress state of the medium
i=xy, 2

o1 —p 2003 g (30— ],

= alp (1 -+ 3 e + 20et) + £ (5) POy Uy + e -+ 3lee?) — pog (5) Ool-

Values of the coefficients of the internal energy interpolation formulas constructed
above are presented in Tables 1~4 for the following metals: Fe (o-phase), Al, Cu, Ni, Pb,
Ti, Be, Au, Cd, Pt, Ag, Zn, Mg, Sn, Sb, V, Nb, Ta, Mo, W, Co, Th, U, and Zr.

§3. The BormMayer potential

34
P_Bo

E exp[B (1 — §—1/3)] — ;: 812, 8 =p/p",

was taken as the initial cold energy equation in constructing the interpolation dependences
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TABLE 1

ateri . —6 —8 a%_w—iZ, , 8/mole

Matertal 2m3g / cc‘r'x:o/,sec’v 'io;lilo/seé cm?/ sec 6., H g g/mol
Fe 7,84 0,5694 0,2866 0,2147 420 55,85
Al 2,785 0,6122 0,2041 0,2594 390 26,98
Cu 8,9 0,4651 0,2141 0,4552 315 63,54
Ni 8,86 0,5437 0,2485 0,2133 375 58,71
Pb 14,34 0,2151 0,0812 | 0,0375 88 207,21
Ti 4,51 0,5858 0,2963 0,2261 380 47,90
Be 1,845 1,289 0,89543 0,5925 1000 | 9,013
Au 19,24 0,32 0,10704 0,0897 170 197,0
cd 8,64 0,278 012941 | - 0,05496 120 112,41
Pt 21,37 0,396 0,13083 0,13399 230 195,09
Mg 1,725 0,575 0,30734 0,2047 318 24,32
Sn 7,28 0,332 0,16416 0,0743 260 118,70
Ag 10,5 0,37 0,17499 0,09746 215 107,88
Zn 7,435 0,417 0,25666 0,08606 235 85,98
Sb 8,67 0,342 0,21059 | 0,05783 200 121,76
\' 6,1 0,6 0,27775 0,25714 273 50,95
Nb 8,6 0,49 0,47325 0,20008 280 92,91
Ta 16,46 0,34 0,07967 0,10712 225 180,95
Mo 10,2 0,619 0,30241 0,26144 380 95,95
W 19,47 0,5174 0,28446 0,15981 310 183,86
Co 8,82 0,472 0,06696 0,21681 385 58,94
Th 11,68 0,29 0,47434 0,04496 100 232,05
U 18,9 0,315 0,1619 0,06428 160 235

Zr 6,49 0,38 0,087037 | 0,1343 250 91,22

(2.1), where the values of the constants are presented for a number of metals in [4]. The
expression for the cold energy permits calculation of the volume compression modulus

K(a):%(ﬁz%’) (3.1)

and the Debye temperature [4]
O(8) = O 6518 1/K(8)/K(1). (3.2)

According to [6], where use of the relationship between the longitudinal and transverse wave
velocities resulting from the Debye theory

v 1/c® + 2/d® = L§/83%(6) (3.3)
is proposed (L is a certain constant), the transverse wave velocity is then calculated.

On the basis of the relationships (3.1)-(3.3), tables of the functions K(e), d*(e), and
v(e) = 0(e)/0o are compiled in the range 0.6 < e™® < 1, which were approximated by cubic
polynomials in €. By using the quadratures

po=\pK(e)de, E,= Xﬁﬁ de - 242 (e) D - WA

c'-"’)m

the cold energy E (e, D, A) was restored, and whose global part was then again interpolated
by a fourth power polynomlal in € [formula (2.3)]. To find the constant M, data presented
in [7] and obtained by measuring the third-order elastic_modulus by ultrasonic methods were
used. Values of the Murnaghan elastic moduli Z m, and n are presented in Table 3 for a
number of metals, which had been determined by expanding the internal energy E in the strain
tensor invariants I,, I,, Is:
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TABLE 3

i1 11 11 11 11

Material |5, q—11 4 me10T T A0, | BT, c-107 M,
ld;z(;ie Jem? dyn/cm? | dyn/cm? | dyn/cm? | dyn/cm? | dyn/cm?

Fe —3,48+-6,5 | —103,0+-7,0( 110+110 | 110110 —158162 |123,2L68,5

Al — — —31,244,2 1 —31,21,2 — —

TABLE 4

Material | 4 A | . Material b, 4 || Material b, A | Material |, &
Fe 2,48 Be 2,24 "Ag 2,89 | Mo 2,72
Al 2,86 Au 2,88 Zn 2,66 w 2,74
Cu 2,56 Cd 2,98 Sb — Co 2,51
Ni 2,49 Pt 2,77 v 2,63 Th 3,60
Pb ’ 3,49 Mg 3,21 Nb 2,86 U -
Ti 2,95 Sn 3,02 Ta 2,86 Zr 3,20

ol — Sl g, - A @m - E) .. (3.4)

Here

I, =Spuy, I,=Spuyy;, I;=Spuilsiliim,

1 [ 6u; | Guw,  du; du "
=g (G g )

(3.5)

where ujy are the strain_tensor components, and uj are displacement components. In addition
to the parameters m, n, 7 defined by the formulas
of B2E N _ a0 FEN s 290
P (azlalz)s » 0 ( or} )S = A&k (3.6)
E

9E 5 - RE 4
p”(m)s = po(ﬂ)s =" '00( or? )s =K+3u
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B=m—n/2,C=1—m+n2,
are often used. Values of K, -];, and C are presented in Table 3 for a number of metals. For-
mulas (3.4)-(3.6) of the second-approximation nonlinear theory of elasticity (five-comstant
theory of elasticity) permit comparing the expressions for the energies E(I;, I., Is, S) and
E(e, D, 4, S).

To do this, the expressions for the invariants I, I,, Is and e, D, and A must be com-
pared in the principal strain axes:

8_—‘_11+I%‘T2[2—‘[3£I?+/1[1Iz_41.‘-3:

D=tli—1,—

7

2
511[2“}'3]?"\'3[3’

132



=
it
‘_\jl o

3 1
B— LI+ T,

Setting
% OE — _ 0E
0= lsr  F=Gwhnor
= 92E = oK
= 3edD le=p—0’ M= 75 oo’
=22
£ le=D=0
we obtain the relationship.
ow = A4 = = KE-+43u 0 , W
7§‘==0, ?5==3Q-%Al, —‘Ear*—==jy4—zﬁ
= 5% T o5, 1% 4157
— A2 =—§Q~2R+7L—§M,
A+3B+C 24,5 17 1%, 255
7 =30 T R—gl—gN+5mM

between the coefficients of the five-constant theory of elasticity and the values of the in-
terpolation coefficients of (2.3). Namely, by expanding the energy Ep in a2 series in g, D,
A

Ep=0QD+ 3¢ +MA++LeD 4+ +Net o ..., (3.7)

we find
Q=2d,, R=adal, I =24}, N =3ail,

which means

3 _— — 8 K 9
dj = ”/Pov M = 4 p° L ’ F = ap,
L ) _ (3.8)
1 {1 - T . % 8.2 —
11_2—7(WA+B-,~-3—+§(13~8)), ls_.—g-,—M(K 4 — 28],

The expressions obtained permit utilization of a simplified cold energy formula computed from
the second—-approximation theory of elasticity

K . ° .
h(g)= 555 €% (1 - Lie), 42 (e) = p_*g (1 + L),

in (2.1) and (2.2), where the coefficients 7, and 1, are found from (3.7) and (3.8).

§4. A change in the internal energy of a material because of a change in its structure
must be taken into account in constructing models of an elastoplastic medium when the inelas-
tic strains is accompanied by a change in the internal structure of the medium. In this case,
the strain processes will not be reversible, in contrast to the elasticity. In other words,
1f the absence of external heat inflows dq(e) = 0 is assumed, then the relaticnship

oTdS = dy’ >0, (4.1)

holds for physically infinitesimal particles of the medium, where dq' is the uncompensated
heat [2].

We define the uncompensated heat by the following relationship:
dy’ = ,i;_f de?,, (4.2)

where Y is the fraction of the elementary work in the plastic deformations which goes over
into heat, and Eij is the plastic deformation tensor.
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If there is no external heat inflow, then the heat inflow equation is
odE = o,;de;;, (4.3)
where we take for €,
ij . »
dsij = d8—;j + dsi]’.

Let us rewrite (4.3) in the form*

aE
( o def; + aS Eas + dn”)_ol,dsu ~y0yded - (1 — ) 0;,del). (4.4)

Taking account of (4.1) and (4.2), we obtain the following:

E del; dE dny

8
T— (I—Y)G"f'ﬂ'zpan.. at
ij

besides (1.3) from (4.4). This last relationship'can be used to determine vy

{1, OF e\ de?jj
v=l-leg— #)/(\Gl—dr (4.5)

Therefore, the question of the redistribution of the work in plastic deformation between
heat and defect formation is resolved.

The relationship
aw del.
P__ . 2
~a CuTg e
in which the plastic strain rate tensor remains undefined, is used for the rate of change of
the work of plastic deformation. The definition of the plastic strain rate tensor depends
on the choice of the physical model. A relationship of the type

dp
dt

zj(G ]’anvT)v (4-6)
can be assumed in a number of cases, where J;; is the flux density tensor of the structure
defects (or the flux density temsor of the dislocations [1]).

To determine the temsor nj;, the kinetic equations must be written by starting from
definite physical considerations [6, 7]

dny;ldt = fi{0;5, ny, T).

Let us examine the problem of the deformation of a long slender rod from low-carbon steel
under the constant stress 0;; = const (creep). Let us use the Orowan relationship [8, 9] as
the dependence (4.6), de“/dt———-bnu, where u is the mean dislocation rate.

Assuming the dislocation densityof a polycrystalline material to be described satisfac-
torily by the scalar parameter n, let us use the test dependence [9]

dn _ 4 dslfi
a3 dt 4.7
where m is a dislocation multiplication factor.
The values of the coefficient m, borrowed from [10], are presented in Table 5.
The relationship (4.5) for the elastic energy equation presented in Sec. 2 is rewritten
in the form

p
dey,

y =1 — pd?b? ""/ Oy —iL.

*The formulas (4.4) are also valid in considering finite deformations if the definition given
for the elastic strain tensor in Sec. 2 and the Murnaghan formulas for the stresses are hence
used; the relationships (4.6) are true for plastic deformations.
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TABLE 5

Mate- | .40—?, | Mate- _
ral. ™, | Hals | merol,
cm Cm—z
Al 80 Mo 8090
Cu 50 U 400
Ni 8 Fe 33—250
s g
|
_ >
: ~ g2
| -
|
|
1 0 . .
T S N A 2 % & o, kbar
Fig. 1 Fig. 2
Taking account of the relationship (4.7), we obtain
y=1— pd2b2%m/o‘n. (4.8),

Values of m = 107'2 ¢n™? are obtained in [8, 9] for low-carbon steel parameters and b =
2.5¢10~% cm, p = pd® = 906 kbar are used. Substituting these values into (4.8), we obtain
1 —y =0.302 for g;, 2.5 kbar, which corresponds to the data of calorimetric measurements.

If the quasistatic strain of a specimen is accompanied by hardening (Fig. 1), and de~
fect formation starts with a certain gg, then the value (1 — v) will diminish as o,; in~
creases (Fig. 2), where 1 — y = 0.15 for o0,; = 5 kbar. It is shown in [9] that the disloca-
tion model used above also holds for shocks of comparatively low intensity ¢;; * 50 kbar (for
high intensity shocks the mechanism of conservative slip of the dislocations will already not
predominate). Hence, to compute the quantity 1 — y in the case of shock propagation in low-
carbon steel rods, (4.8) can be used, from which it follows that the main dissipation because
of defect formation occurs on the shock front where the pulse grows from the value og {elas-
tic forerunner) to the final g; on the plastic wave front.
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